2. November 2010

# (Advanced) Cloud Computing Teamproject & Project

Organizer: Advisors: Prof. Dr. Georg Lausen

Alexander Schätzle, Martin Przjyaciel-Zablocki, Thomas Hornung

dbis

# Requirements

#### Study regulations

- Master: 16 ECTS
  → 480 hours ~ 34h/week p.P.
- Bachelor: 6 ECTS
  → 180 hours ~ 13h/week p.P.
- Team size: 3-4 students
- Project report
- Final presentation
- Workload of every student must be clearly distinguishable

# Organization

#### Time & Place:

- Monday 14-17 pm (c.t.)
- Room: SR 00 007 (MMR), Building 106

#### Next Meeting:

- Monday, 8. November 2010 14-17 pm (c.t.)
- Room: SR 00 007 (MMR), Building 106

#### Further Schedule:

Schedule

- Meeting with short presentations of all groups
- Further individual meetings upon consultation

# **Project Schedule**

- Induction phase
  - Until Tuesday, 2. November 2010 Today!
  - Project placing + Classification of groups

#### Short presentation

- 8. November 2010
- Project introduction
- Milestones
- Internal work-sharing

#### Implementation phase

- Programming & Documentation
- 10. / 17. January 2011: Status report of the Milestones (Meeting or Presentation)

#### Final presentation

- 7. February 2011
- Contribution of project report (14. February 2011)

Schedule

# 2. Project>> Bachelor

**Bachelor Project** 

# Motivation

#### Facebook (2010)<sup>1</sup>

- > 500 Million active users saving profiles, pictures, comments, news
- > 900 Million sites, groups, events, ...
- Usage: > 700 Billion minutes per month
- How can we handle and analyze such huge amounts of Data?
- Solution: Distributed-Computing?

Source: (1) Facebook Press Room (22.09.2010) http://www.facebook.com/press/info.php?statistics

6

# **Task Description**

### Analysis of social Networks

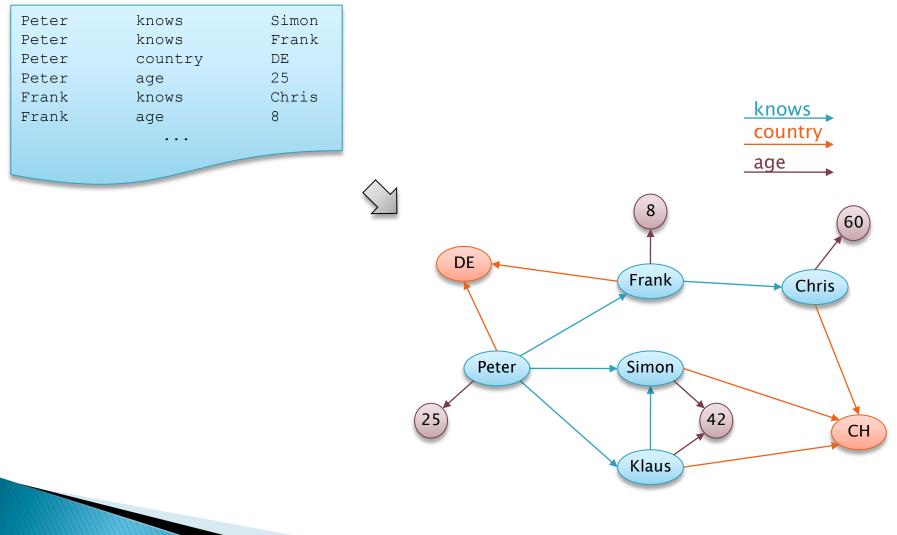
- Query Language with navigational capabilities
- Friend of a Friend (FOAF) Queries
- Search for shortest paths

### Means of expression

- Startnode (e.g. "Chris")
- Specification of edges (Location steps) (e.g. "knows")
- Filter (e.g. age = 18, gender = female)
- Shortest Paths

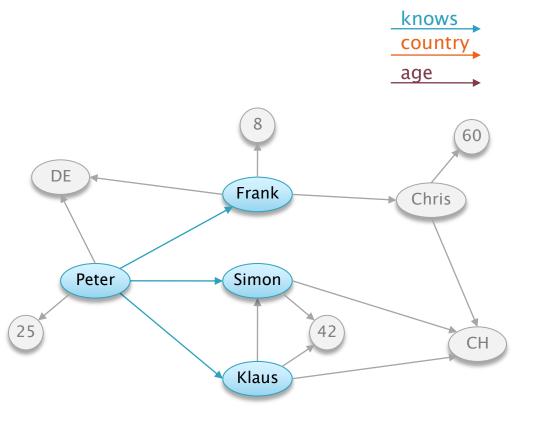
**Bachelor Project** 

# Task Description (2)


### Data basis

- Graph of a social Network (Last.fm)
- Friendship relationships
- Properties of Users and Tracks
- Analyzing interesting characteristics "Six-Degrees of Separation "
- Representation: RDF-like Triples (no explicit URIs)

### Last.fm


- Musikdienst mit sozialem Netzwerk
- Freundschaften, Musiktitel, Hör-Profile, u.v.m.!

# Example

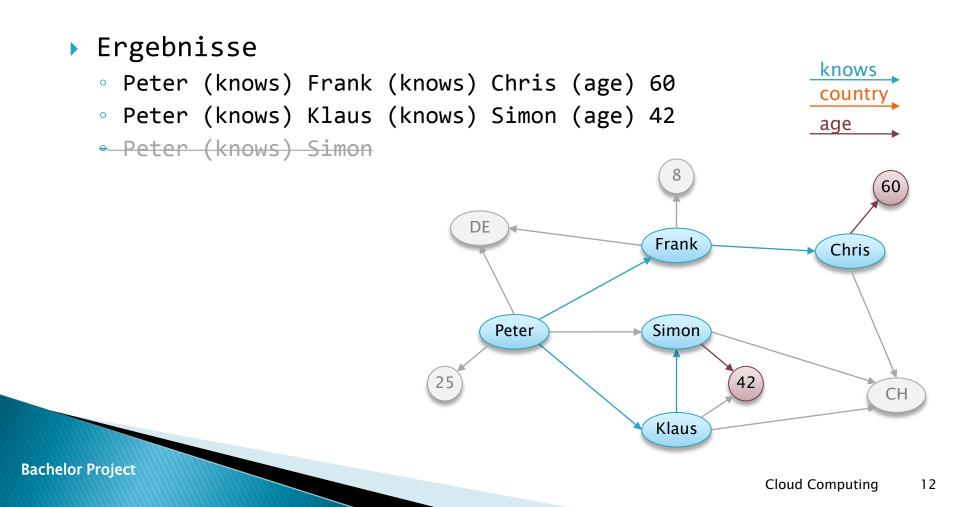


# Example: Startnode


- Peter :: knows.
- Ergebnis
  - Peter (knows) Frank
  - Peter (knows) Simon
  - Peter (knows) Klaus

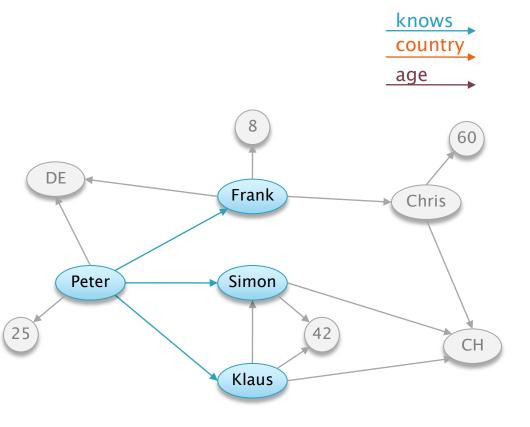


### **Example: Location Steps**


Peter :: knows > knows > age.

- Zwischenergebnisse
  - Peter (knows) Frank
  - Peter (knows) Klaus
  - Peter (knows) Simon




# Example: Location Steps (2)

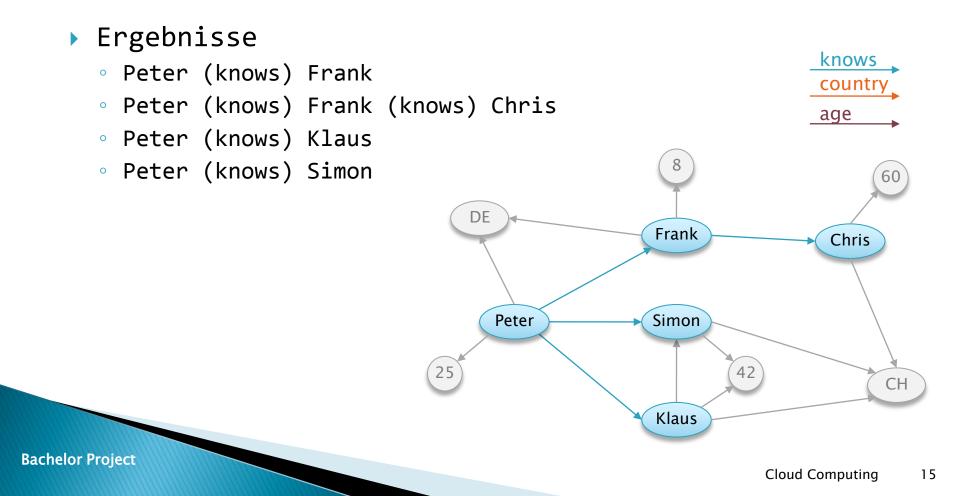
Peter :: knows > knows > age.



### **Example: Filter**

- > Peter :: knows > country [equals(DE)].
- Zwischenergebnisse
  - Peter (knows) Frank
  - Peter (knows) Klaus
  - Peter (knows) Simon




# Example: Filter (2)

> Peter :: knows > country [equals(DE)].



# Example: Shortest Paths

> Peter :: knows(\*3).



# Last.fm Overview



# Last.fm Overview (2)

180056

269247

144040

268310

153366

#### User

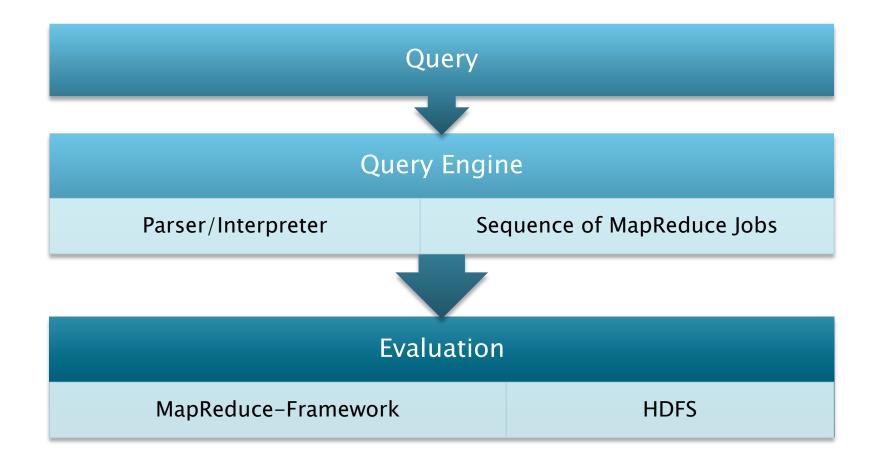
| 0 | knows:      |
|---|-------------|
| 0 | topArtists: |
| 0 | topTracks:  |
| 0 | topAlbums:  |
| ~ | lictonodTo. |

- listenedTo: 0
- country: 0
- playcount: 0
- realname: 0
- gender: 0
- 0 age:

#### Album

| 0 | artist:    | 269900 |
|---|------------|--------|
| 0 | tracks:    | 181624 |
| 0 | playcount: | 240347 |

#### Track


| 0 | artist:    | 271237  |
|---|------------|---------|
| 0 | album:     | 181624  |
| 0 | topFans:   | 8970531 |
| 0 | duration:  | 271205  |
| 0 | playcount: | 271205  |

#### Artist

- o tracks: 271234 album: 0
- topFans: 0
- topTracks: 0
- topAlbums: 0
- similar: 0

- 269898
- 7439313
- 7728443
- 936749
- 59471056

# Implementation



# Goal (Bachelor Projekt)

#### (1) Distributed Analysis of Social Networks

- Parsing of a Path Query Language
- Translating a Query in a Sequence of MapReduce-Jobs
- Storing (intermediate) results in the Cluster
- Execution of MapReduce–Jobs with Hadoop

#### (2) Means of Expression

- Startnode
- Multiple Location Steps
- Filter
- Shortest Paths

#### (3) Get experienced in handling MapReduce, HDFS, ...

# 3. TeamprojectMaster

(Master) Team Project

## Requirements

#### Study regulations

- Master: 16 ECTS
  → 480 hours ~ 34h/week p.P.
- Recommendation: **no** parallel lectures!
- Team size: 3-4 students
- Project report
- Final presentation

# Requirements (2)

- Self-activated Investigation and Induction in the needed topics:
  - Triple Stores
  - SPARQL
  - Resource Description Framework (RDF)
  - MapReduce
  - Hadoop Distributed Filesystem
  - HBase
- Workload of every student must be clearly distinguishable

# **Task Description**

#### Goal

 Design and Implemenation of a distributed RDF Triple Store built on top of Hadoop (MapReduce-Framework)

#### General Conditions

- SPARQL as Query Language
  (at least Basic Graph Patterns + Filter)
- Execution in the MapReduce-Framework (Hadoop)
- Storage strategy using HDFS or HBase

# Agenda

#### ► Now

- Group assignment: 3-4 students per Team
- Exchange contact informations (E-Mail, phone)
- Plan your next team internal meeting (as soon as possible)

#### Until next meeting (8. November)

- Get to know the Project Task
- Investigation and conceptual Design
- Determine Milestones and Schedule (Recommendation: ~ 3 Milestones)
- Plan internal work-sharing (regarding individual skills)

#### 8. November

- Short presentation of all groups (5–10 minutes)
- Content: Project introduction, Milestones and internal work-sharing (perhaps overview of the planned architecture)

#### Next Meeting

- Monday, 8. November 2010 14-17 pm (c.t.)
- Room: SR 00 007 (MMR), Building 106